

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

prism.FFmpeg

The FFmpeg transcoder is designed to take any media stream and pipe it into a spawned ffmpeg process.

Make sure you have ffmpeg available on your system if you want to use it. Try installing ffmpeg-binaries [https://www.npmjs.com/package/ffmpeg-binaries] if ffmpeg isn't already available in your path.

Usage

new prism.FFmpeg(options);

Where options is an object containing the args property, an array of arguments to pass through to ffmpeg when spawning the process.

Example

This stream is used heavily in discord.js [https://discord.js.org/] to transcode media files to raw audio ready to be assembled into Opus packets to then send over voice connections, as such here is a relevant example:

const fs = require('fs');
const prism = require('prism-media');

const input = fs.createReadStream('./file.mp3');
const output = fs.createWriteStream('./output.pcm');
const transcoder = new prism.FFmpeg({
 args: [
 '-analyzeduration', '0',
 '-loglevel', '0',
 '-f', 's16le',
 '-ar', '48000',
 '-ac', '2',
],
});

input.pipe(transcoder).pipe(output);

By default, if your arguments are missing the -i flag, we will assume that you're going to pipe a stream into the ffmpeg process, so we'll prepend ['-i', '-'] for you.

However, ffmpeg supports a lot of protocols [https://ffmpeg.org/ffmpeg-protocols.html] so we can simplify the above example and probably reduce some overhead by telling ffmpeg where our file is rather than piping it in ourselves:

const fs = require('fs');
const prism = require('prism-media');

const output = fs.createWriteStream('./output.pcm');
const transcoder = new prism.FFmpeg({
 args: [
 '-i', 'file.mp3',
 '-analyzeduration', '0',
 '-loglevel', '0',
 '-f', 's16le',
 '-ar', '48000',
 '-ac', '2',
],
});

transcoder.pipe(output);

Prism Documentation

Welcome to the Prism Media documentation.

Table of Contents

	Index

	Getting Started & Installation

	Volume Transformers

	Demuxers

	FFmpeg

	Opus

Getting Started

The important things you should take from this:

	You install the modules you need to get the features you want - you can't use Opus if you don't have an Opus module installed.

	The interface is stream-based, which should make developing with it more intuitive.

Installation

You'll need to first install Node.js, and then you can install prism-media like so:

$ npm install prism-media # latest stable release
$ npm install hydrabolt/prism-media # development

Functionality

By default, no extra packages come with prism, so you're limited to just volume transformers and demuxers. This is so you can pick and choose which parts of prism you require.

	Volume Transform	Demuxing	Opus	FFmpeg
no extras	yes	yes		
krypton [https://github.com/Hackzzila/krypton]	yes		yes	
node-opus [https://github.com/Rantanen/node-opus]			yes	
opusscript [https://github.com/abalabahaha/opusscript]			yes	
FFmpeg (directly [http://ffmpeg.org/] or via ffmpeg-binaries [https://github.com/Hackzzila/node-ffmpeg-binaries])				yes

Opus

The 3 supported Opus libraries are krypton, node-opus, and opusscript (as shown above). They are also preferred by prism in this order; krypton is more performant, whereas opusscript is less so but doesn't require building upon installation.

FFmpeg

If you would like to use FFmpeg with prism, you can either install directly from FFmpeg.org, or through ffmpeg-binaries (links in the table above).

If you're installing directly, you'll need to ensure ffmpeg is in your path, or that the executable file is placed in the root of your project's directory (with the package.json file)

Volume Transformers

const volume = new prism.VolumeTransformer16LE({
 volume: 0.5, // 50% of the original volume
});

// the input is a 16-bit little-endian stream of PCM
const halfVolume = input.pipe(volume);

There are 4 available transformers, all 16-bit/32-bit and little-endian/big-endian:

	prism.VolumeTransformer16LE

	prism.VolumeTransformer32LE

	prism.VolumeTransformer16BE

	prism.VolumeTransformer32BE

Constructor

new prism.VolumeTransformerXXYY(options)

	options: Object (optional)

	volume: Number, the volume relative to the input (1 is 100%, 0.5 is 50% etc.)

Properties

transformer.volume

Number - 1 represents 100% of the original input. This shouldn't be set directly, use the methods listed below.

Methods

transformer.setVolume(volume)

volume: Number, the volume

Sets the volume relative to the input stream - i.e. 1 is normal, 0.5 is half, 2 is double.

Returns: void

transformer.setVolumeDecibels(volume)

volume: Number, the volume in decibels

Sets the volume in decibels.

Returns: void

transformer.setVolumeLogarithmic(volume)

volume: Number, a value for the perceived volume

Sets the volume so that a perceived value of 0.5 is half the perceived volume etc.

Returns: void

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

